If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+25k=0
a = 1; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·1·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*1}=\frac{-50}{2} =-25 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*1}=\frac{0}{2} =0 $
| +3/5q=7 | | 14f-8=7f+20 | | x=1(10)x+9 | | a-17=25 | | 12v-17=15v-20 | | (5z-1)(5+z)=20 | | –4x+4=–12 | | -7/6x+(8+8/6)=-2x | | x2=Y2=25 | | 5.1p=10.2 | | 27-18x=20-72x | | 11+14=22x | | 1/4(12x-8)=20 | | 79+x=65 | | (5u-3)(5+u)=0 | | -5=1/5m | | 3/2+2/3-1/2=4.3+x | | 12n-7n+2-5=47 | | 2(5x+8)-10=16 | | 4a/5+a/3=34 | | q^2-14q=0 | | -(1+1/6)x+(1+1/3)=-2x+8 | | 2w+4+5w+1=33 | | 6y=-(12/7) | | 3x+7=5×-21 | | (12x-7)=16x+19) | | 2w+4+5+1=33 | | 2.5r=20 | | g+312=10 | | H=n(n+1)/2 | | 3x+1+2x+3=6+3 | | -2(v+9)=4 |